
Now, let me come in to the, if the flow is incompressible. Again, we have a lot of

simplifications. Again, I can repeat it. The flow systems when you have mac number less than

0.3, okay, whether it is gas, whether it is a liquid or any flow system, if you think that the within

the flow system the flow becomes less than the mac number less than 0.3, then there will be

density variation, but that variation of density is much much negligible comparing to other

components.

So, we can assume the flow is incompressible nature. Again, I am going to summarise that.

When you have any flow systems, mac number is less than 0.3, so we can use flow as

incomprehensible flow, density does not vary significantly. So, density becomes constant, as

density becomes constant, as you know it, it is very simplified problem what we are going to

solve.

So, density varies negligible, as the density variation is not significant and beta equal to 1, so

only this equ ation is left for us. Simple thing. This is very simple equation.

DBsys


=




  d∀CV(t)

∀ + ACS(t) b ( ⃗  ) dA

0

 ⃗ .


 0

Now, there, the scalar product of V and n and d A, okay, and density can come out. So, instead

of the mass flux we are now talking about volumetric flux. That means, if you multiply the

217



velocity into area, then what you get is unit ⁄ , volume per unit height, volumetric flux,

okay? So, please do not confuse, this is a different equation.

If the inlet and outlet are one-dimensional

 





 





Where, Qi= AiVi

Only that we are not showing the density multiplication. If you multiply with a Q, the V into

A is Q is discharge. So, Q = V   , is the discharge. So, most of the conservation of mass

you write it, since density is a constant, you make it come out from that equation.

So, it looks like volumetric level we are comparing but all are mass conservation equations.

We talked about mass flux is coming in or going out from the control volume or mass flux is

changing within the control volume. That is the concept to that. But as it is simplified, in case

the flow is incomprehensible, density is a constant, that density component comes out from

Reynolds transport theorem which helps us look like we are looking at equating the volumetric

thing, but it is not that.

Please remember we are still doing the mass conservation equation. The volumetric form has

come in because you have taken out the density. That is what if you look it A1 V you have

these things. That means, if I have a pipe flow like this, you can anticipate it. As we discussed

earlier, the velocity will be 0 near the wall, velocity will be maximum at the center and so there

will be velocity distribution, there will be velocity distribution from this side.

The flow coming and going out. If this is simple in and out system, you can know this velocity

distribution area, find out the discharge from inflow and outflow, equate it, then you can solve

the problem. So, what I am looking at is again summarised here. To solve this mass

conservation equation I should have knowledge on velocity field. I should know how the

velocity varies or I should know whether the velocity is a constant or the velocity varies. If I

know the velocity variations on this control surface, then I can solve the problem.
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So, basically, when you apply the mass conservation equation your knowledge of velocity

variation is important to you, how you are simplifying the velocity field on the control surface.

That way we solve the problem.

(Refer Slide Time: 36:45)

So, the velocity field knowledge is required for mass conservation equations.

(Refer Slide Time: 36:58)

So, that way, whenever you take fluid mechanics problems, first you think what could be

approximate velocity field, what could be the velocity direction. If I assume the flow is one

dimensional, is it enough for me that one dimensional flow is okay for us or not, for that

problem or not, or you need to have two-dimensional velocity fields, or what could be the

direction, whether it is a direction with respect to the control surface normal vectors.
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All the knowledge you should have when you are applying any real life fluid problems, but as

I said earlier, this academic problem is simplified and they do not tell the velocity component,

whether the velocity what they talk about that is perpendicular to the control surface, that way

it is considered. So, that is the easier way it is there for knowledge about the velocity fields,

that is what is necessary.

And where you have velocity fields are not known, I do not think you can apply the

conservation of mass equation properly. So, let us come into the incomprehensible flow. Let

us look at these figures, you can assume it uniform velocity distribution, okay? That means

velocity does not vary with respect to the position. It is a constant velocity. If it is a constant

velocity, V into area will give me the Q value.

   ⃗ .




It is very easy, V into area will give its value. Only I need to have the control surface where

the normal vector should have either velocity vector directions and this normal vector, either

0 ̊ or 180 ̊ to find out whether it will be Q positive or Q negative. So, when you have uniform

velocity, the problem is quite simplified. But the case is you do not have uniform velocity as

you know it when you have a pipe flow.

You cannot have uniform velocity. You do not expect that you will have uniform velocity for

that. So, you will have 0 velocity near the boundary of the wall of the pipe and you will have

velocity like this. So, in that case, many of the problems will give you average velocity. The

average velocity what we get,

 



1

⃗ . 

So, it represents average velocity. It considered the velocity distribution to compute the

average velocity. So, somewhere the average velocity will come like this okay. So, some of

the case, the problems give the average velocity. That means it considers the velocity

distribution, after that it has given the average velocity. By doing surface integrals average

velocity is given.

Once you know the average velocity you multiply with the area you will get the volumetric

flux or the discharge. But in some of the cases, if you know the velocity distributions, how it

varies. You do surface integrals of that and find out what is average velocity. Multiply with
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the density and the area will get the mass flux. We will get mass flux if you have the product

of density, velocity, and the area. Velocity will be the average velocity.

In some cases like this, you may have the condition where the velocity variations may be very

complicated. Then, you need to do the integration to compute the average velocity for that.

So, we need to do surface integrals to compute it, how the velocity is varying it and this is my

control surface. So, that way we can quantify the V average which is by integrating velocity.

Similar way, consider if the flow is comprehension, you assume the density is varying it, you

can use average density concept, okay? Again, you can integrate density with respect to area,

then you compute the average things and you can multiply that. Please remember in this case

it cannot be if a density and the velocity, the multiple functions will not be separate functions,

okay?

They will be depending on each other. Then, this simplification cannot be done. But assuming

the density and the velocity does not depend on each other, they are independent, then you may

follow this concept to do this averaging to find out for compressible flow, okay? For

comprehensible you can do this average product. But the assumption is that the density does

not have dependency with the velocity vector.

If the density is varying

 
1



If it is that, then you need to do the product of the velocity and the density and do the surface

integral to solve the problem.

For mass flow, which is a product of density and velocity and therefore the average product is

given by

 
1

⃗ .  

(Refer Slide Time: 42:18)
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Now, let us come to the very interesting problem which is there in text book of F.M. White

book. What is there, there is a tank. If you look at this figure, there is a tank, two inflows are

there, the tank is being filled with waters. Within the tank there is air and there is water, liquid

and gas form of water. The problem is not given here but I can put it there should be air valve

here, okay?

The tank is being filled with water by two one-dimensional inlets. Air is trapped at the top of

the tank. The water height is h.

(a) Find an expression for the change in water height dh/dt.

(b) Compute dh/dt if D1 = 25 mm, D2 = 75 mm, V1 = 0.75 m/s, V2 = 0.60 m/s, and At = 0.2 m2

assuming water at 20oc

As the liquid expands it, there should be air valve for air to come out from that. Otherwise,

this will be very complicated problem. As you put more and more liquid, but the air cannot be

compressed, that type of problem we are solving. Having said that there is air valve, as the

liquid increases the space and the gases are not able to fit there, it will come out, okay? That

is very simplification we have to do it for this problem.

Flow classification:

One dimensional

Unsteady

Laminar

Fixed control volume
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So, this is one-dimensional inlet. Air is trapped at the top of the tank with air valve, what I

have included here, and this water height is h, find the expression change in the water level

with respect to time. How water level is changed?

As you know it, the density also changes with temperature and the pressure, but mostly for the

liquid like water it is temperature dependent. So, that is what we are doing here. So, given

data is here. But again I need to tell you when you solve the problem, first you do the flow

classification. The problem here is one-dimensional in nature. Unsteady because we are

finding out the storage varies with respect to time.

Flow can be laminar or turbulent, we do not know it, okay, and we have a fixed control volume.

This is what we consider is fixed control volume, okay? First, whenever you solve the problem,

you classify the problem. Once you classify problems it gives indirectly that these are the

assumptions that are valid for this problem that we are solving. So, classify the problem. Give

the data given.

Data Given:

D1 = 25 mm

D2 = 75 mm

V1 = 0.75 m/s V2 = 0.60 m/s

At = 0.2 m2

(Refer Slide Time: 44:58)

If it is that, apply the Reynolds transport theorems, okay? You apply the Reynolds transport

theorems. You have the inflow and the outflow. There is no outflow in this case. In both the
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case you have inflow, which is negative here. So, rho 1 A1 A2 and rho 2 A2 V2 and what is

changing the storage of the water inside this control volume. This is the control volume and

this is control surface. The flow is coming in, okay?

Appling the control volume approach, equation for the unsteady flow with two inlet and no out

let



 ∀


      0

What is happening is there is change of the mass of water here, change of the air here. This

part we are neglecting it because we are not putting this air valve here. We are neglecting that

part, how the air part is changing, otherwise we will go for incompressible and all. Do not go

for that, that is complicating this problem. So, we are just talking about how this part is

changing it. So, you can simplify it.

If At is the tank cross sectional area, the unsteady term can be evaluated



 ∀


 



ℎ 



  ℎ  

ℎ


The density does not change; it is incompressible flow. We know the area of the tank. So, dh

by dt, that is how this integral and surface integral will come to this one. Now, we will equate

that.

(Refer Slide Time: 46:14)

ρa term vanishes as the air is trapped at the top. Then substituting the second equation in the

first

ℎ



  


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Again, I am going to repeat it. First, you classify the problem. Assume the appropriate control

volume and the control surface and each control surface you identify which is the inflow and

outflow. Then, you talk about what is the change of the storage and what is happening.

So, if you can understand properly, applying this Reynolds transport theorem and the

simplification and put the numerical value, it does not take much time or much problem to

solve any problem. The first is the classification and application of appropriate control

volumes. Find out the influx what is coming, mass influx, from where and from which part of

the cross section, like this part is inflow, this part is also inflow, and the change in the storage

is here. And the change in storage what we can represent.

And if we do that, the problems you can solve it. So, first how to use the classification. Again,

I am going to repeat it. Please do the classification accurately. Then, choose appropriate

control volume. The control surface should be perpendicular to the velocity vector. That is

what you see there. I can have any shape, then I have to do surface integrals. To avoid the

surface integrals we have to make control software so that velocity should be perpendicular to

that, okay.

With respect to normal vector it should have 0 ̊or 180 ̊. So, in that case, you need not do surface

integrals. So, your control surface you chose in such a way that you should have the normal

vector of the surface and the velocity they should be collinear. That is the concept to be

considered. Then, it is very simple simplification, you just substitute the values;

ℎ


  



  


For water ρ1= ρ2= ρw

   
1
4
25  100.75 ⁄   3.68  10  ⁄

   
1
4
75  100.60 ⁄   2.7  10  ⁄

ℎ


3.682  10  2.7  10 ⁄

0.2  0.015 ⁄
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Finally, you will get the rate of change of the height, that means in this the height will change

0.015 meter per second. The storing within the tank will be there like this, okay, 0.015 meter

per second. Let us come to the second example which is very interesting example, showing

you the facilities what we have in IIT Guwahati, in the department of civil engineering.

(Refer Slide Time: 49:02)

The water is flowing in a flume with a downward seepage average velocity at upstream is 0.3

m/s and at down stream is 0.26 m/s. the width and depth of the channel are 1m and 0.15m

respectively. Find out the quantity of seepage (q).

That is experimental flume 4 meter wide and 18 meter long. The photograph you can see.

Similar way, we have the experimental facility to do hydraulic studies, having 1 meter wide

and 15 meter width. Here we have the seepage arrangement which is unique in this way. So,

that seepage arrangement means water from the surface can go to the ground water. That

means, from this control volume water can seep downwards.

That is the seepage facility what we have here. Considering that is what the control volume is,

we are now going to solve this problem that if I have the velocity measurement at the upstream

and the downstream, can I compute what will be the seepage rate per unit length, okay? That

means I know the average velocities at the upstream, I know this downstream velocity.

Also I know the width and the depth of the channels respectively, then can I compute it how

much of water goes out from this control volume at seepage as a downward movement. Flow

classification:
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One dimensional

Steady

Turbulent

Fixed control volume

So, this is how we have a control volume. So, this is the upstream direction and this is the

downstream direction. This is my control volume. Some of the water seepage out from this

control volume.

Data Given:

Width (B) = 1 m

Depth (D) = 0.15 m

Average velocities, V1 = 0.3 m/s

V2 = 0.26 m/s

Mass influx, mass outflux since it is a steady problem, and density is constant. So, at

volumetric level I just compare it, how much of water is coming to this control volume, how

much of water goes as seepage, as a downstream, outside from this control volume.

(Refer Slide Time: 51:41)

Now, we are getting this width and depth. We have the velocity, then we are looking at the

seepage rate. You can see I apply the mass conservation equations. Data Given:

Width (B) = 1 m

Depth (D) = 0.15 m

Average velocities, V1 = 0.3 m/s

V2 = 0.26 m/s
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Appling the control volume approach, equation for the steady flow

0



 ∀


        0

This is the outflux going out from this. This is outflow, seepage, downward path. So, if you

rearrange it, you get the  is this as the density is a constant. The water density does not

change in this flow system. So, you get what will be the q value liter per second per meter.

That is what you compute. Only we have to visualise that. There is the flow, inflow and

outflow, the seepage.

    

This is the same way in a river. If this is the river, this is the groundwater zone. There is

exchange, river recharges to the groundwater. This same process happens, or reverse also is

true, ground water can give flux into the river. That means this q will be positive or negative

sign. Otherwise, with the same control volume we can apply mass conservations for a river

and groundwater interaction study. That is what you learned in hydrology course.

  1  0.150.3 ⁄   0.045 ⁄  45 /

  1  0.150.26 ⁄   0.039 ⁄  39 /

      45  39  6 lit/sec/unit length

(Refer Slide Time: 53:28)

Now, take another example, problem which is with Ganga-Brahmaputra confluence which is

not in India, it is in Bangladesh, okay. Let us consider Ganga and Brahmaputra is meeting,
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okay? We have Padma river systems, and with these rivers we have all the measurements

available of these systems. At 1, 2, and 3, when Ganga and Brahmaputra and Padma meets

there we have a cross section 3 here.

Find the amount of water lost as a storage at Padma river after Ganga-Brahmaputra confluence

with the following data

Ganga: Width, 700m; depth, 1.5m and average velocity, 0.9m/s

Brahmaputra: Width, 900m; depth, 1.2m and average velocity, 1m/s

Padma: Width, 1000m; depth, 1.6m and average velocity, 1.2m/s

So, we have a control volume like this. So, this is a no flow, this is a no flow. The flow will

be only this, here and here and here. So, this is inflow, this is inflow, this is outflow. So, the

average velocity is given, width is given, depth is given. So, we have to compute the q1, q2,

and q3. Based on that we have to find out whether change in storage is there or not. That means

we have to find out amount of water lost as storage in Padma river after the Ganga-Brahmaputra

confluence with the following data.

Flow classification:

One dimensional

Unsteady

Turbulent

Fixed control volume

Data Given:

Ganga

W1 = 700m

Y1 = 1.5m

Vavg1 = 0.9m/s

Brahmaputra

W2 = 900m

Y2 = 1.2m

Vavg2 = 1m/s

Padma

W3 = 1000m

Y3 = 1.6m

Vavg3 = 1.2m/s

In Ganga, Brahmaputra, and Padma which is are confluencing, after that we call Padma. How

much the flow depth is there, width is there, average velocity is given which is more or less
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average velocity as we do a lot of river survey in Ganga and Brahmaputra systems in our

country.

(Refer Slide Time: 55:08)

So, if I have width and the depth and velocity like this, so we can apply this continuity equations

for this control volume, okay? For Ganga, Brahmaputra, Padma systems I have control

volumes and all, I can have positive and the negative, okay?

Appling the control volume approach, equation for the unsteady flow with two inlet and one

out let



 ∀


        0

So, substituting this value with have a negative or a positive of change in the storage. So,

simple way we can just multiply it to get the q1, q2, and q3. If you look it is a very complex

problem, but with the help of the control volume we just look at mass flux coming in from this

surface and going out this surface. That will be change in the mass within this control volume.

That is what it says, how much storage of mass is changing within control volume.
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

     

Considering the measurement of the velocity and the flow depth and the area at these three

points we can judge how much of water we are losing or gaining in a stretch of river systems.

You can understand these type of problems we can solve, okay? Whether river is gaining from

other locations or the water is losing from the river. That type of study with a simple type of

control volume we can do it.

  700  1.50.9 ⁄   945 ⁄

  900  1.21 ⁄   1080 ⁄

  1000  1.61.2 ⁄   1920 ⁄




 945 1080  1920 = -105 ⁄

(Refer Slide Time: 56:49)

Let us have the last example, okay? It is slightly a bit complicated. There is a soil matrix, let

it have chambers. The flow is coming Q1, Q2, and Q3. There are two inflows. The discharge

is coming, Q3 is outlet, and there are the seepage flow or download percolations are happening

which depends upon the storage within the system. That is why Q is a function of storage.

[The soil matrix is filled with water by the two one-dimensional inlets and one outlet with the

downwards percolation . Find out the amount of percolation from the given data.

Q1 = Q2 = 0.1 lit/sec, Q3 = 0.05 lit/sec and q = f(s) = KS+0.1

where S is storage and K is hydraulic conductivity]
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How much of water in storage, that function with a K, K is linear coefficient that is where

which may be considered sometimes as hydraulic conductivity in storage. I have Q1 and Q2,

I have the Q3, how of litre per second, because there is very less quantity of water, not

comparable with the Ganga and Brahmaputra systems. So, litres per second we are coming to

that. So, in that case, flow can confine.

Flow classification:

One dimensional

Unsteady

Laminar

Fixed control volume

Data Given:

Q1 = 0.1 lit/sec

Q2 = 0.1 lit/sec

Q3 = 0.05 lit/sec

q = f(s) = KS+0.1

(Refer Slide Time: 57:59)

Now, if I substitute this equation, if you look at these inflows are the negative, outflows are

positive, and Qx is the function of this. So, Appling the control volume approach, equation for

the unsteady flow with two inlet and one out let



 ∀


          0
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

       



 0.1 0.1 0.05    0.1  0.05 

This is in terms of s. K is a constant.

(Refer Slide Time: 58:26)

So, we can integrate it to solve these problems.




0.05  
 

 
1

ln0.05    

So, finally you get this equation. That is how s varies with respect to time. That is what is our

problem. So, I have given three examples. One is a simple tank problem. Another is three

river confluence point. Third is seepage problem. And fourth is the soil matrix problem. So,

that way if you look at any of the Cengel, Cimbala, or F.M. White book, a lot of exercises are

there, there are a lot of example problems which are also solved.

So, only this art of applying this control volume concept that you should learn it. May be very

complex problems but use of appropriate control volume and the control section knowing the

direction of the flow that will help us. By applying the Reynolds transport theorems, we can

solve the problems. That is my idea and that what I need to convince.

(Refer Slide Time: 59:26)
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Before that let me give a warning to you or suggestions to you, that whatever human body I or

you, all are having mass inflow and outflow systems, that is what it is saying, that the

conservation of mass in a human body is pounds per day, 2.5, 9.2 pounds. This much of water

and food and oxygen we take, which is 13.5 pounds, okay. And we release the solids, water,

and CO2, some of this 13.5.

Please do not disturb this inflow and outflow. If you disturb the inflow and outflow we do not

know what we are doing to our system of body, okay? Either we are deteriorating the body,

our health, we do not know it. What I am going to tell is the 9.2 pounds of water please drink

it. Similar way, the 2.2 pounds per day of food you eat so that your systems would be perfectly

okay for now and total youthful life.

You can enjoy it if you maintain the simple balancing the mass conservation principle is

followed by the human body with different water, food, and this, with a slight bit variations.

But overall this equation you should follow, with food 2.5, water 9.2, oxygen 1.8 pounds per

day. And we release the same amount whatever we get it and release the same amount, only

we vary the solids to 0.3, the water to 11, and 2.2.

So, many of the foods we convert to water and we convert the oxygen to carbon dioxide. That

we do it and for a healthy life we should follow this equations and we should remember this

equation. Whenever you wake up in the early morning we should also maintain this equation,

then we will have a healthy life. It is more important to say this.

(Refer Slide Time: 01:01:35)
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With this let me conclude this very interesting lecture. I do not know whether you enjoyed or

not, but let us have a talk about that. We have applied Reynolds transport theorem which looks

very difficult, surface integrals or volume integrals, but it can be simplified in many ways and

when you simplify this complex equation and apply to real life problems like as I have given

examples.

Similar way, real life problems if we can apply it really we can find out what will be change in

the storage, what will be the change in mass inflows and outflows, that is a standard problem.

So, please try to solve some of the problems which is given in Cengel Cimbala or F.M. White

book in exercise and example problems. With this, let me conclude this lecture today. Thank

you a lot.
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